Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 710: 149881, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38583233

RESUMO

Maackia amurensis lectins serve as research and botanical agents that bind to sialic residues on proteins. For example, M. amurensis seed lectin (MASL) targets the sialic acid modified podoplanin (PDPN) receptor to suppress arthritic chondrocyte inflammation, and inhibit tumor cell growth and motility. However, M. amurensis lectin nomenclature and composition are not clearly defined. Here, we sought to definitively characterize MASL and its effects on tumor cell behavior. We utilized SDS-PAGE and LC-MS/MS to find that M. amurensis lectins can be divided into two groups. MASL is a member of one group which is composed of subunits that form dimers, evidently mediated by a cysteine residue in the carboxy region of the protein. In contrast to MASL, members of the other group do not dimerize under nonreducing conditions. These data also indicate that MASL is composed of 4 isoforms with an identical amino acid sequence, but unique glycosylation sites. We also produced a novel recombinant soluble human PDPN receptor (shPDPN) with 17 threonine residues glycosylated with sialic acid moieties with potential to act as a ligand trap that inhibits OSCC cell growth and motility. In addition, we report here that MASL targets PDPN with very strong binding kinetics in the nanomolar range. Moreover, we confirm that MASL can inhibit the growth and motility of human oral squamous cell carcinoma (OSCC) cells that express the PDPN receptor. Taken together, these data characterize M. amurensis lectins into two major groups based on their intrinsic properties, clarify the composition of MASL and its subunit isoform sequence and glycosylation sites, define sialic acid modifications on the PDPN receptor and its ability to act as a ligand trap, quantitate MASL binding to PDPN with KD in the nanomolar range, and verify the ability of MASL to serve as a potential anticancer agent.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ácido N-Acetilneuramínico/metabolismo , Maackia/química , Maackia/metabolismo , Neoplasias Bucais/patologia , Cromatografia Líquida , Ligantes , Espectrometria de Massas em Tandem , Lectinas/farmacologia , Antineoplásicos/farmacologia , Análise de Sequência , Movimento Celular
2.
Mikrochim Acta ; 191(2): 118, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296851

RESUMO

Highly specific detection of tumor-associated biomarkers remains a challenge in the diagnosis of prostate cancer. In this research, Maackia amurensis (MAA) was used as a recognition element in the functionalization of an electrochemical impedance-spectroscopy biosensor without a label to identify cancer-associated aberrant glycosylation prostate-specific antigen (PSA). The lectin was immobilized on gold-interdigitated microelectrodes. Furthermore, the biosensor's impedance response was used to assess the establishment of a complex binding between MAA and PSA-containing glycans. With a small sample volume, the functionalized interdigitated impedimetric-based (IIB) biosensor exhibited high sensitivity, rapid response, and repeatability. PSA glycoprotein detection was performed by measuring electron transfer resistance values within a concentration range 0.01-100 ng/mL, with a detection limit of 3.574 pg/mL. In this study, the ability of MAA to preferentially recognize α2,3-linked sialic acid in serum PSA was proven, suggesting a potential platform for the development of lectin-based, miniaturized, and cost effective IIB biosensors for future disease detection.


Assuntos
Técnicas Biossensoriais , Neoplasias da Próstata , Masculino , Humanos , Lectinas/química , Biomarcadores Tumorais , Antígeno Prostático Específico , Maackia/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/diagnóstico , Técnicas Biossensoriais/métodos
3.
Exp Cell Res ; 403(1): 112594, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33823179

RESUMO

COVID-19 was declared an international public health emergency in January, and a pandemic in March of 2020. There are over 125 million confirmed COVID-19 cases that have caused over 2.7 million deaths worldwide as of March 2021. COVID-19 is caused by the SARS-CoV-2 virus. SARS-CoV-2 presents a surface "spike" protein that binds to the ACE2 receptor to infect host cells. In addition to the respiratory tract, SARS-Cov-2 can also infect cells of the oral mucosa, which also express the ACE2 receptor. The spike and ACE2 proteins are highly glycosylated with sialic acid modifications that direct viral-host interactions and infection. Maackia amurensis seed lectin (MASL) has a strong affinity for sialic acid modified proteins and can be used as an antiviral agent. Here, we report that MASL targets the ACE2 receptor, decreases ACE2 expression and glycosylation, suppresses binding of the SARS-CoV-2 spike protein, and decreases expression of inflammatory mediators by oral epithelial cells that cause ARDS in COVID-19 patients. In addition, we report that MASL also inhibits SARS-CoV-2 infection of kidney epithelial cells in culture. This work identifies MASL as an agent with potential to inhibit SARS-CoV-2 infection and COVID-19 related inflammatory syndromes.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Lectinas/farmacologia , Boca/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Progressão da Doença , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Humanos , Maackia/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
Sci Rep ; 7: 46041, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28485374

RESUMO

The pathophysiology of autistic spectrum disorder (ASD) is not fully understood and there are no diagnostic or predictive biomarkers. Glycosylation modified as many as 70% of all human proteins can sensitively reflect various pathological changes. However, little is known about the alterations of glycosylation and glycoproteins in ASD. In this study, serum glycopattern and the maackia amurensis lectin-II binding glycoproteins (MBGs) in 65 children with ASD and 65 age-matched typically developing (TD) children were compared by using lectin microarrays and lectin-magnetic particle conjugate-assisted LC-MS/MS analyses. Expression of Siaα2-3 Gal/GalNAc was significantly increased in pooled (fold change = 3.33, p < 0.001) and individual (p = 0.009) serum samples from ASD versus TD children. A total of 194 and 217 MGBs were identified from TD and ASD sera respectively, of which 74 proteins were specially identified or up-regulated in ASD. Bioinformatic analysis revealed abnormal complement cascade and aberrant regulation of response-to-stimulus that might be novel makers or markers for ASD. Moreover, increase of APOD α2-3 sialoglycosylation could sensitively and specifically distinguish ASD samples from TD samples (AUC is 0.88). In conclusion, alteration of MBGs expression and their sialoglycosylation may serve as potential biomarkers for diagnosis of ASD, and provide useful information for investigations into the pathogenesis of ASD.


Assuntos
Transtorno do Espectro Autista/sangue , Glicoproteínas/sangue , Lectinas/metabolismo , Maackia/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Estudos de Casos e Controles , Criança , Pré-Escolar , Biologia Computacional , Feminino , Ontologia Genética , Glicoproteínas/química , Glicosilação , Humanos , Lectinas/química , Masculino , Análise em Microsséries , Peptídeos/química , Ligação Proteica , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes
5.
Appl Microbiol Biotechnol ; 100(17): 7479-89, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27063013

RESUMO

Maackia amurensis Rupr. et Maxim is a valuable leguminous tree grown in the Russian Far East, in China, and in Korea. Polyphenols from the heartwood of this species (primarily stilbenes and isoflavonoids) possess strong hepatoprotective activity. Callus culture of M. amurensis produced isoflavonoids and their derivatives. In pharmacological experiments, the callus complex was at least as effective, as the plant complex. To increase the yield of isoflavonoids, calli were transformed with the rolB gene of Agrobacterium rhizogenes. Neomycin phosphotransferase (nptII) gene was used for transgenic cell selection. Three rolB transgenic callus lines with different levels of the rolB gene expression were established. Insertion of the rolB gene caused alterations in callus structure, growth, and isoflavonoid production, and stronger alterations were observed with higher expression levels. MB1, MB2, and MB4 cultures accumulated 1.4, 1.5, and 2.1 % of dry weight (DW) isoflavonoids, respectively. In contrast, the empty vector-transformed MV culture accumulated 1.22 % DW. Isoflavonoid productivity of the obtained MB1, MB2, and MB4 cultures was equal to 117, 112, and 199 mg/L of medium, respectively, comparing to 106 mg/L for the MV culture. High level of expression of the rolB gene in MB4 culture led to a 2-fold increase in the isoflavonoid content and productivity and reliably increased dry biomass accumulation. Lower expression levels of the rolB gene in MB1 and MB2 calli did not significantly enhance biomass accumulation and isoflavonoid content, although the rolB gene activated isoflavonoid biosynthesis during the early growth stages and caused the increased content of several distinct compounds.


Assuntos
Proteínas de Bactérias/genética , Isoflavonas/biossíntese , Maackia/genética , Maackia/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , beta-Glucosidase/genética , Agrobacterium/genética , Regulação da Expressão Gênica de Plantas , Isoflavonas/química , Canamicina Quinase/genética
6.
Phys Chem Chem Phys ; 17(26): 16805-12, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26058603

RESUMO

The antioxidant isoflavone retusin efficiently attaches low-energy electrons in vacuo, generating fragment species via dissociative electron attachment (DEA), as has been shown by DEA spectroscopy. According to in silico results obtained by means of density functional theory, retusin is able to attach solvated electrons and could be decomposed under reductive conditions in vivo, for instance, near the mitochondrial electron transport chain, analogous to gas-phase DEA. The most intense decay channels of retusin temporary negative ions were found to be associated with the elimination of H atoms and H2 molecules. Doubly dehydrogenated fragment anions were predicted to possess a quinone structure. It is thought that molecular hydrogen, known for its selective antioxidant properties, can be efficiently generated via electron attachment to retusin in mitochondria and may be responsible for its antioxidant activity. The second abundant species, i.e., quinone bearing an excess negative charge, can serve as an electron carrier and can return the captured electron back to the respiration cycle. The number of OH substituents and their relative positions are crucial for the present molecular mechanism, which can explain the radical scavenging activity of polyphenolic compounds.


Assuntos
Antioxidantes/metabolismo , Elétrons , Flavonoides/metabolismo , Maackia/metabolismo , Antioxidantes/química , Antioxidantes/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Maackia/química , Teoria Quântica
7.
Avian Pathol ; 42(1): 60-71, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23391183

RESUMO

Avian influenza (AI) viruses have been detected in more than 105 wild bird species from 12 different orders but species-related differences in susceptibility to AI viruses exist. Expression of α2,3-linked (avian-type) and α2,6-linked (human-type) sialic acid (SA) influenza virus receptors in tissues is considered one of the determinants of the host range and tissue tropism of influenza viruses. We investigated the expression of these SA receptors in 37 wild bird species from 11 different orders by lectin histochemistry. Two isoforms of Maackia amurensis (MAA) lectin, MAA1 and MAA2, were used to detect α2,3-linked SA, and Sambucus nigra lectin was used to detect α2,6-linked SA. All species evaluated expressed α2,3-linked and α2,6-linked SA receptors in endothelial cells and renal tubular epithelial cells. Both α2,3-linked and α-2,6-linked SA receptors were expressed in respiratory and intestinal tract tissues of aquatic and terrestrial wild bird species from different taxa, but differences in SA expression and in the predominant isoform of MAA lectin bound were observed. With a few possible exceptions, these observed differences were not generally predictive of reported species susceptibility to AI viruses based on published experimental and field data.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Aviária/metabolismo , Lectinas/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Animais , Aves , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Especificidade de Hospedeiro , Influenza Aviária/virologia , Mucosa Intestinal/metabolismo , Intestinos/virologia , Maackia/metabolismo , Especificidade de Órgãos , Isoformas de Proteínas , Receptores de Superfície Celular/isolamento & purificação , Receptores Virais/isolamento & purificação , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Especificidade da Espécie
8.
J Virol ; 86(19): 10408-17, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22787229

RESUMO

Glycans are key determinants of host range and transmissibility in several pathogens. In the case of adeno-associated viruses (AAV), different carbohydrates serve as cellular receptors in vitro; however, their contributions in vivo are less clear. A particularly interesting example is adeno-associated virus serotype 9 (AAV9), which displays systemic tropism in mice despite low endogenous levels of its primary receptor (galactose) in murine tissues. To understand this further, we studied the effect of modulating glycan binding avidity on the systemic fate of AAV9 in mice. Intravenous administration of recombinant sialidase increased tissue levels of terminally galactosylated glycans in several murine tissues. These conditions altered the systemic tropism of AAV9 into a hepatotropic phenotype, characterized by markedly increased sequestration within the liver sinusoidal endothelium and Kupffer cells. In contrast, an AAV9 mutant with decreased glycan binding avidity displayed a liver-detargeted phenotype. Altering glycan binding avidity also profoundly affected AAV9 persistence in blood circulation. Our results support the notion that high glycan receptor binding avidity appears to impart increased liver tropism, while decreased avidity favors systemic spread of AAV vectors. These findings may not only help predict species-specific differences in tropism for AAV9 on the basis of tissue glycosylation profiles, but also provide a general approach to tailor AAV vectors for systemic or hepatic gene transfer by reengineering capsid-glycan interactions.


Assuntos
Dependovirus/metabolismo , Polissacarídeos/química , Animais , Células CHO , Capsídeo/química , Membrana Celular/metabolismo , Cricetinae , Células Endoteliais/citologia , Erythrina/metabolismo , Feminino , Galactose/química , Células HEK293 , Humanos , Células de Kupffer/citologia , Fígado/citologia , Maackia/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Ratos , Vibrio cholerae/metabolismo
9.
Carbohydr Res ; 343(18): 3034-8, 2008 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-18828994

RESUMO

EGF-induced activation of EGFR tyrosine kinase is known to be inhibited by ganglioside GM3, its dimer, and other mimetics. However, details of the interaction, such as kinetic properties, have not yet been clarified. The direct interaction is now defined by the surface plasmon resonance (SPR) technique. To determine the affinity of EGFR for lyso-GM3 or lyso-GM3 mimetic, these glycolipid ligands were covalently immobilized onto a sensor chip, and binding affinities were investigated. Results of these studies confirmed the direct interaction of lyso-GM3 or its mimetic with EGFR. A strong interaction between EGFR and lyso-GM3 or its mimetic was indicated by increased binding of EGFR to glycolipid-immobilized surface, in an EGFR dose-dependent manner.


Assuntos
Receptores ErbB/metabolismo , Glicolipídeos/metabolismo , Materiais Biomiméticos/metabolismo , Sequência de Carboidratos , Gangliosídeo G(M3)/análogos & derivados , Gangliosídeo G(M3)/metabolismo , Glicolipídeos/química , Glicosilação , Humanos , Cinética , Maackia/metabolismo , Dados de Sequência Molecular , Lectinas de Plantas/metabolismo , Ligação Proteica , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
10.
Proteomics ; 8(16): 3274-83, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18690646

RESUMO

Thirty-five variant lectins were prepared by mutations of two amino acids within the carbohydrate-recognition domain of Maackia amurensis hemagglutinin (MAH). Each lectin showed unique carbohydrate specificity according to their bindings to soluble polyacrylamide with various mono- and oligosaccharides and to glycophorin A. The relative intensity of the bindings of carcinoma, myeloid, fibroblastic, and melanoma cells to immobilized MAH variant lectins was examined. Each cell line showed distinct profiles regarding the number of cells bound to wild-type and 35 MAH variants and the differences and the similarities in these binding profiles were quantitatively documented by the cluster analysis. The cell lines were classified into several groups and these groups surprisingly corresponded to the lineage of the cells. These results indicated that a library of mutated MAH is useful as a tool for the profiling of various cells based on the variations of the surface glycans.


Assuntos
Diferenciação Celular , Linhagem da Célula , Maackia/metabolismo , Lectinas de Plantas/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Análise por Conglomerados , Células HL-60 , Humanos , Maackia/genética , Camundongos , Mutação , Células NIH 3T3 , Lectinas de Plantas/química , Lectinas de Plantas/genética , Ligação Proteica , Células U937
11.
Glycoconj J ; 25(3): 279-90, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18158621

RESUMO

Increased sialylation of cell surface glycoconjugates is among the key molecular changes associated with malignant transformation and cancer progression. We investigated significance of linkage-specific sialylation changes in oral carcinogenesis. Tissue and serum levels of total sialic acid (TSA), linkage-specific sialyltransferases (ST) and sialoproteins were analyzed from patients with oral precancerous conditions (OPC) and oral cancer as well as the post-treatment follow-up blood samples of oral cancer patients. TSA levels were measured using a spectrophotometric method. The linkage-specific lectins, Sambusus nigra (SNA) and Maackia amurensis (MAM) detects alpha 2-6- and alpha 2-3-linked sialic acid, respectively, were used to analyze ST activity and sialoproteins. Malignant tissues showed significantly higher levels of TSA, reactivity of SNA and MAM, and alpha 2,3-ST activity compared to the adjacent normal tissues. alpha 2,6-ST was also higher in malignant tissues. Similarly, the marker levels were higher in precancerous tissues than their adjacent normal tissues. Serum levels of TSA, TSA/ total proteins, alpha 2-6-sialoproteins and alpha 2,6-ST were markedly increased in untreated oral cancer patients compared to the controls and OPC as well as responder (CR) patients. Serum levels of the markers were higher or comparable between untreated oral cancer patients and non-responders (NR). Serum levels of alpha 2-3-sialylation were elevated in non-responders compared with the responders. Further, the observed sialylation changes in tissue and serum were found to be associated with various clinicopathological features and disease progression. Thus, the data suggest potential utility of sialylation markers in early detection, prognostication and treatment monitoring of oral cancer.


Assuntos
Neoplasias Bucais/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Glicoproteínas/metabolismo , Humanos , Maackia/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Estadiamento de Neoplasias , Lectinas de Plantas/metabolismo , Sambucus/metabolismo , Sialiltransferases/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA